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EFFICIENT CONVERSION OF NON- METRIC INFORMATION INTO METRIC INFORMATION 

By: Robert P. Abelson and John N. Tukey 

Yale University and Princeton University 

The title of this paper may prove mislead- 
ing. "Conversion of non -metric information into 
metric information" may sound like getting some- 
thing for nothing. In fact, we are concerned 
with getting a convenient modest something for 
an inconvenient modest something. Further, our 
methods are thus far limited to a particular 
class of situations. We do not have anything 
like a universal recipe for converting the qual- 
itative into the quantitative, though a good 
deal can be done within the confines of the sit- 
uations with which we are here concerned. 

Consider n points to which we wish to as- 
sign numerical values, X1, X2,....Xn. Suppose 
we have insufficient information to provide a 
natural or "correct" assignment of numerical 
values; our knowledge is limited to a set of 
constraints on the values, i.e. a set of inequ- 
alities on the X's. (For example, X1 

Consider first the purposes that an assign- 
ment of numerical values can serve in such a 

situation. It has become somewhat fashionable, 
particularly in certain areas of the behavioral 
sciences, to frown upon "arbitrary" numerical 
assignment (scaling) procedures.Some take the 
position that in the absence of a compelling 
rationale for numerical assignment, no numerical 
assignment whatever should be attempted. (Stevens, 
1951). Thus if a set of points are known only 
up to a rank order, one is limited to the decl- 
aration of an "ordinal scale ", Further manipu- 
lations using the scale are limited, so the 
dictum goes, to techniques appropriate to ordinal 
scales -- in particular, to those non -parametric 
statistical techniques designed for the analysis 
of rankings. The net effect of this dictum is 
to restrict the flexibility of statistical ana- 
lysis severely and unnecessarily. 

Reliance in such circumstances upon non - 
parametric procedures seems to us to be unwise, 
not because such procedures always lack power 
(90% power is no cause for disdain), but because 
they are poorly adapted to the variety of uses 
one requires for good insight into bodies of 

data. Often when adaptation to new uses is 
attempted, it is only at considerable sacrifice 
of power (as in the situations discussed here). 
Furthermore, the typical state of knowledge short 
of metric information is not rank -order informa- 
tion; ordinarily, one possesses something more 
than rank -order information. For example, one 
may know that X1, X2, and are ordered and in 
addition that X2 is closer to X3 than it is to 

X1. Non -parametric techniques which take full 
advantage of such types of situation are general- 
ly unavailable. We would like to probe more 
deeply here, to gain some idea of what lies be- 
tween rank -order scales and metric scales. 

Consider now the kind of problem for which 
a numerical assignment procedure is useful. 
Suppose that the n points represent levels of an 
independent variable and that we wish to carry 
out the regression of a dependent variable (about 
which we have metric information) upon this Inde- 
pendent variable (about which we have only non- 

metric information). To be even more specific, 
the independent and dependent variables might be 

imbedded in an analysis of variance design where 
we were interested in forming a single degree of 
freedom contrast among the levels of the inde- 
pendent variable. The appropriate coefficieots 
to use in forming such a contrast would be a 
direct outcome of an assignment of numerical 
values. 

To sum up thus far: we seek a procedure for 
assigning numerical values to a set of n entities, 
given a set of inequalities which the assigned 
values must obey. The problem is of interest be- 
cause a) it sheds light upon the nature of know- 
ledge intermediate between rank -order knowledge 
and. metric knowledge, and b) the solution makes 
powerful regression techniques,particularly the 
formation of contrasts,applicable to many situa- 
tions when the entities represent levels or ver- 
sions of an independent variable. 
The criterion for good numerical assignment. 

The sequence of n numerical values to be 
assigned must obey certain inequalities. Like- 
wise, the "ideal" values, the values one would 
assign if one had full scale knowledge, must obey 
the same inequalities. That is, both the sequence 
we choose and the sequence we ought to have chosen 
lie in the convex set of sequences permitted by 
the inequalities. Denote the chosen sequence by 
[X1, X2,...Xn] and the ideal sequence by [Y1, Y2 

A convenient and reasonable criterion of 
the success of our choice is the square of the 
formal product- moment correlation between [X1 and 

2 

r2 = 
- 2 Z (X1-X) -Y) 

i =1 i =1 

To avoid confusion, one must note that this cor- 
relation coefficient is purely "formal" and is 
not to be thought of in terms of a bivariate dis- 
tribution from which points are sampled. This r2 
plays a key role in the specific application dis- 
cussed earlier. In testing the significance of a 
contrast, the power of the test increases directly 
with r2. The same r2 is almost ubiquitous in 
other aspects of regression analysis. 

There is an obvious difficulty with r2 as a 
criterion: one does not know the ideal sequence, 
[Y]. The sequence [X] is of our choice; but, in 
our ignorance, [Y] might be any sequence within 
a certain range of possibilities. A further 
choice must be made in order to provide a usable 
criterion. On the one hand, one might make some 
kind of distributional assumption about the pos- 
sible [Y]'s, and average r2 over this a priori 
d is r oh. It is difficult to do this in any 
reasonable and meaningful way. (Indeed the re- 
sulting mathematical problem is rather difficult 
to attack.) On the other hand, one might make 
the conservative, fixed assumption that the Y 
sequence may well be such as to minimize 
the chosen X- sequence. This minimum r2, for. [Y] 



satisfying the inequalities and [X] fixed, is the 

criterion we have chosen to assess any fixed [X]. 

The mathematical problem then becomes a maximin 

problem: how should one choose [X] such that the 

minimum r2 is maximized? 
In other words, we play a "game against 

Nature" in which we fear the worst. For any 

choice of numerical assignments for [X], assume 

that Nature chooses a set of "true" values [Y] 

which obey the inequalities but yield r2 min., 

the lowest possible squared product- moment coef- 

ficient with [X]. We play the game by choosing 

[X] such that r4 min. is maximized. (We refer 

to this choice as the "Maximin sequence ", denoted 

by [C]). This results in a guarantee that r2 

cannot be less than a certain value, denoted as 

r2 maximin, so long as Nature obeys the inequal- 

ities. The strategy amounts to optimizing the 

conservative guarantee, rather than maximizing 

some kind of average value. 

Mathematical properties of the problem. 

Since the criterion is correlational, the 

units and origins of the sequences [X] and [Y] 

are immaterial to the maximin problem. In what 

follows, only the relative spacing of the n num- 

erical values is of consequence, while the units 
and origins are chosen for convenience 

With a given set of inequalities there is 

associated a special set of sequences which we 

call "corners ", such that any admissible sequence 
[Y] can be generated as a positive linear combin- 
ation of the corner sequences. (The name corner 
arises from the geometrical conception of the 
permissible sequences as a convex set of vectors). 

As an gxample, consider the rank order case: 

Y2 Y3;, Y4. Fixing Y1 = 0, a simple set of 

corners is the triplet: 
(0, 0, 0, 1) 

(0, 0, 1, 1) 

(0, 1, 1, 1) 

Any [Y] satisfying rank order (with Y1 0) can 

be expressed as a positive linear combination of 
these corners. 

The corners provide the key to the maximin 
solution, via the following two theorems proved 
by Tukey. Proofs are given in our more extended 
article. (Abelson and Tukey, 195$). 

Theorem I. For any fixed [X]. minimum r2 
is reached for [Y] equal to one of the corner 
sequences. In other words, whatever choice we 
make for [X], Nature plays her most damaging 
game at one of the corners. Consider the rank 
order case again, and suppose we "play" the equal- 
interval sequence -3,- 1,1,3. Nature achieves 
r2 min. = .600 by playing 0,0,0,1 or 0,1,1,1. 
No worse than this can be done to us when we play 
-3,- 1,1,3. (However, we have a better play in 
the maximin sense). 

Theorem II. (Oversimplified) The maximum 
r2min is achieved by the sequence which correlates 
equally with all corner sequences. In the rank 
order case with n 4, we need simply find the 
sequence (C1, C2, C3, C4)which correlates equ- 
ally with (0,0,0,1), (0,0,1,1), and (0,1,1,1). 
This is a matter of simultaneous linear equations 
in the unknown C's which are readily solved. 

Theorem 2 as it has been given here is not 
correct for all sets of inequalities. In part- 
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cular, the theorem fails when the sequence which 

correlates equally with all corners does not it- 

self satisfy the appropriate inequalities. Fur- 

ther complications arise when there are more than 

(%-1) corners in a given case. The fuller paper 

goes into the subtle details involved. The cor- 

rect but more involved theorem will simply be 

stated here in passing: For any system of in- 

equalities with its associated corner sequences, 

there exists one and only one sequence which a) 

is a positive linear combination of a set of the 

corner sequences such that b) it correlates 

equally highly with all these corners and c) 

more highly with corners not in the set, if any. 

Results for the rank order case 

First we present in some detail the results 

for the rank order case. Then, more briefly, 
the results for other cases. Throughout we use 

for the values of the maximin sequence the con- 

venient normalization 

= 0 = /r2 maximin 
i =1 i =1 

The maximin sequence in the rank order case for 

n=4 is: -.866, -.134, .134, .866. For n=8, the 

values are: -.935, -.289, -.144, -.045, .045, 

.144, .289, .935. For indefinitely large n, the 

limiting values for the extreme points are: 
-1.000, -.414, -.318, -.268 ,.268, 

.318, .414, 1.000. 

The solution is markedly non -linear. The 

values at the two ends have very large relative 
separation from the next values inwards. This 
comes about because the solution is guarding 
against the possibility that Nature will play 
0, .... 0,0,0,1 or 0,1,1,1, .... 1,1. A 
linear sequence can fail rather badly against 
these possibilities, especially for large n. 

However, in practice one is often unwilling to 
acknowledge sequences as pathological as a,a,... 
a,a,a,b as reasonable possibilities for the 
"true" sequence. If so, then one may attempt to 
rule out such unusual sequences from Nature's 
repertoire. This means reformulating the in- 
equalities so that these pathological corners 
do not occur. This is possible in a number of 
ways, all of which require that something more 
stringent than mere rank order be assumed. When 
this is done, one finds that the end values of 
the maximin sequence are not forced to lie so far 
from the body of the sequence as in the rank 
order case, and a linear sequence does not fare 
as poorly (in the maximin sense) as a basis for 
numerical assignment. Of this, more later. 

The following brief display gives r2 maximin 
in the rank order case for various values of n; 
by way of comparison, the values of r2 min. 
against a linear assignment are shown. 

n 5 10 20 50 
r2 maximin .596 .478 .406 .339 
r2 min.(linear) .500 .273 .143 .059 

100 200 500 1000 
.303 .274 .244 .225 2 /2 +log.(m -1) 
.030 .015 .006 .003 3 /(m +l) 

Asymptotically, r2 maximin approaches zero, but 
very slowly, whilst r2 min. for a linear sequence 
approaches zero rather rapidly. 
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The form of the maximin sequence may be 
roughly approximated with a simple pattern of 

integers by the following device: write down a 
linear sequence with mean zero, quadruple the ex- 
treme values and double the next -to -end values. 
At n=8, for example, this quick approximation to 
the maximin sequence would be (- 28, -10,- 3,1,1,3, 
10,28). For n less than 50, the r2 min. for this 
approximation is at least 90% as high as r2 max - 
imin. This scheme, which we dub as the "linear - 
2-4" sequence, is easily remembered. 

If Nature is really playing a near -linear 
sequence, then of course we would be better off 
by playing a linear sequence than by guarding 
against wild behavior of Nature by playing the 
maximin solution or its surrogate, the linear -2- 
4. If we would like to achieve higher r2 in case 
Nature's behavior is near -linear without risking 
too great a drop in r2 below the maximin value in 

case Nature's behavior is wild, a good hedge for 
small n is to choose a "linear -2" sequence; that 
is, a linear sequence with the end values doubled. 
In passing, it might be mentioned that "rankits ", 
like linear coefficients, fare poorly when Nature 
is behaving wildly. 
Other orderly cases 

Definitions 
I. Symmetric Rank order 

< < < < < 
X- - - - - - - - Xn_1 

DI Dn_l, D2 = -2' D3 = Dn_3 

where D1 = (X2 -X1), D2 = (X3 -X2) 

Dn-1 (Xn -Xn -1) 
H. Symmetric, Extremes Bunched 

< < < < 
X- - - - - - - - -- X Xn 

(D1 Dn -1) 
(D2 = Dn -2) 

- (D3 = Dn -3) 
III. Non -symmetric, Extremes Bunched 

< 
1 < 2 3 <n -1 <n 

D1 - D2 D3 
- 

IV. Symmetric, Extremes Spread 

< < < < 
-Xn 

(D1 -1) = Dn-2) (D3 = Dn -3)... 
V. Non -symmetric, Extremes Spread 

X X X X 
1 2 3 n -1 n 
> > 

Dl D2 
-2 -3 

VI. "Diminishing Returns" 

< < < < 
X1 X2 X3 -X. 

D1 - D2- D3 

n I II 

Maximin r2 
(or mirror image) 

V VI III IV 
3 1.000 1.000 .750 1.000 .750 .933 
4 .853 .947 .909 '.974 .667 .887 
5 .853 .974 .778 .947 .625 .834 
6 .786 .940 .874 .922 .599 .827 
7 .786 .964 .787 .901 .578 .806 
8 .744 .936 .856 .882 .561 .789 

9 .744 .958 .791 .865 .548 .774 
10 .714 .935 .845 .850 .536 .761 

11 .714 .953 .793 .837 .526 .750 
12 .692 .935 .838 .826 .517 .740 

13 .692 .950 .794 .815 .507 .731 

14 .674 .935 .832 .805 .501 .724 
15 .674 .949 .795 .796 .492 .716 
16 .659 .934 .827 .788 .487 .710 

17 .659 .948 .795 .780 .479 .704 

18 .646 .934 .825 .773 .475 .699 
19 .646 .947 .796 .767 .467 .694 
20 .636 .934 .823 .762 .464 .689 

Maximin weights exemplified: n = 8 
CI -.707 -.477 -.548 -.707 -.935 -.935 
C2 -.293 -.395 -.418 -.219 -.110 -.160 
C3 -.225 -.312 -.289 -.131 -.055 -.062 
C4 -.189 -.230 -.159 -.044 0 .036 
C5 .189 .230 .159 .044 0 .134 
C6 .225 .312 .289 .131 .055 .231 
C7 .293 .395 .418 .219 .110 .329 
C8 .707 .477 .548 .707 .935 .427 

Further cases for small n 
In the literature on psychological scaling, 

the case in which the first differences of a 

ranked sequence are ranked is called an "ordered 
metric scale" (Coombs,1950). The cases treated 
above are a limited coverage of this variety of 
scale. Next we consider all possible ordered 
metric scales with n= 3,4,or 5. Also, we consi- 
der for n=4 all possible "higher- ordered metric 
scales" (Siegel, 1956). These are cases in which 
all differences of a ranked sequence are ranked. 
In addition, the rank order case for n =3 and 4 
is considered with a numerical constraint on the 
relative size of the biggest or the smallest in- 
terval. 

Ordered metric scales with n =3 
< here is only 9ne case here. We have 

X 
1 
-X 

2 
-X 

3 
and X2 -X1- X3 -X2. (The other possi- 

bility is simply a mirror image of this one). The 
maximin sequence can be approximated with the 
simple integer sequence (- 7,2,5) with r2 min. 
.923. 

n =4 
Maximin coefficients and maximin r2, for all 

cases of n=4 involving only simple inequalities 
among differences. 
1. The three differences (X2 -X1), (X3 -X2) and 

(X4-X3) are represented by the digits 1,2, and 3. 
2. When the inequalities specify that a particu- 
lar difference is greater than another, the 
larger difference is written first (e.g. the 
system of inequalities (X3 -X2) (X2 -X1) 

(X4 -X3) 0 is written 213.) 
3. When the relative size of two differences is 

not specified, they are enclosed in parentheses. 
(e.g. the system of inequalities (X2- XI)2(X3 -X2)1 
0; (X2 -X1) (X4 -X3) 0 is written 1 (23). 

System C1 C2 C3 C4 r2 

(13)2 -87 00 00 87 .667 
(12)3 -87 -13 50 50 .789 
1(23) -87 05 27 55 .887 
132 -87 05 27 55 .887 
123 -87 04 29 54 .887 
2(13) -66 -34 34 66 .909 
213 -66 -34 42 58 .941 



System C2 C4 C5 r2 

(124)3 -89 -20 00 20 89 .595 
(123)4 -89 -20 00 55 55 .694 

(14)(23),(14)23 -89 00 00 00 89 .625 
(13)(24),(13)24, 
(13)42 -89 -10 -10 55 55 .704 

(12)(34),(12)34 -89 -20 33 36 40 .801 

(23)(14),(23)14 -55 -55 00 55 55 .833 

1(234) -89 00 08 25 57 .840 

1(34)2,1342, 
14(23),1432 -89 01 04 29 55 .843 
1(24)3, 1423 -89 -04 12 29 52 .853 
1(23)4,12(34),(12)43, 
1324,1234,1243 -89 -05 13 32 50 .854 
2(134) -69 -40 16 35 58 .892 
2(14)3 -69 -40 26 26 58 .901 

24(13) -61 -49 16 36 58 .914 
23(14) -56 -54 14 40 56 .918 
2(34)1,2341,2431 -56 -54 16 36 57 .921 

2(13)4 -69 -40 18 44 47 .923 
2413 -61 -49 21 30 58 .927 
21(34),2134,2143 -69 -40 21 38 50 .931 

2314 -63 -47 19 37 53 .935 

Higher- ordered metric scales for n =4 
These cases can be specified as elaborations 

of ordered metric scales. The notation is as in 

the previous displays, with the addition of con- 
straints upon the sums of differences. For ex- 
ample (in the abbreviated notation), 1 +2> 3 

signifies D1 D3. 

System CI C2 C3 C4 r2 

123; 1?2 +3 -87 07 36 43 .933 
123; +3 -73 -19 35 58 .972 

132; 1 +3 -87 16 16 55 .908 
132; 152 +3 -72 -10 13 69 .974 
213; +3 -66 -34 50 50 .952 

213; 251 +3 -73 -19 35 58 .972 
A further case with n =3 

Rank order is known, and the ratio of the 
larger D to the smaller D does not exceed K. (We 
do not know which D is larger, however). 

K r2 
9 .824 
4 .893 
2 .964 
1.5 .987 

The maximin sequence for any K can be represented 
most simply by (- 1,0,1). 

n=4 
Rank order is known, and the largest D 

(whichever it is) does not exceed the fraction p 
of the range. 
p Cl C2 C3 C4 r2 
.40 -67 -24 24 67 .981 
.50 -71 -24 24 71 .893 
.60 -71 -26 26 71 .865 
.70 -75 -22 22 75 .816 
.80 -79 -16 16 79 .765 
.90 -83 -14 14 83 .711 

Rank order is known, end the smallest D, 
whichever it is, is not less than the fraction q 
of the range. 
q CI C2 C3 C4 r2 

.05 -82 -15 15 82 .723 

.10 -78 -16 16 78 .796 
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.15 -74 -18 18 74 .865 

.20 -71 -19 19 71 .924 

.25 -69 -20 20 69 .971 

.30 -68 -22 22 68 .988 

Discussion 
Results for a large number of cases have 

been presented. Many of the maximin r2's are 
seen to be in the .80's or .90's. This is quite 

good for most analytic purposes. Thus a little 
non -metric information will go a long way when it 
is converted to metric information. A comparison 
of cases makes it clear that maximin r2 is most 
readily boosted above the rank order value when 
the inequalities put bounds upon the external in- 
tervals of the sequence. "Extremes bunched" is a 
more favorable case than "extremes spread "; for 

n =4 and 5, r2 is higher when an internal interval 
is known to be biggest than when an external in- 
terval is known to be biggest. Restrictions on 
the fraction of the total range allotted the big- 
gest interval result in powerful increases in r2; 
this comes about because huge external intervals 
are thereby prohibited. One way to summarize 
this class of results is to say that scales with 
big gaps in the middle are more "robust" than 
scales with big gaps in the tails. 

Certain other general conclusions are appar- 
ent from the results: symmetry is a fairly power- 
ful condition; higher- ordered metric scales can 
be very close indeed to numerical scales; and so 
on. 

Nevertheless, many of you are no doubt won- 
dering about the proof of this pudding. How of- 
ten can maximin sequences actually be put to good 
use? 

The answer is not cut -and -dried. Consider 
the rank order case. Here the values of maximin 
r2 are only fair; moreover, the maximin sequence 
has an unfamiliar flavor. The end values are 
moved far out to guard against wild plays of 
Nature. Are we seriously recommending that for a 
rank order case with, say n=6, the contrast 
(- 20, -6,- 1,1,6,20) be used to capture the single 
degree of freedom associated with the rank order? 

The investigator might reject the appropriate- 
ness of this contrast. He might say, "It is too 
bizarre. Give me straight- forward linear weights, 
or perhaps rankits. I do not foresee that Nature 
will play tricks on me ". Our reply would be, "If 
you say your non -metric information is rank order 
and nothing more, then you implicitly acknowledge 
the possibility of a "true" sequence of the form 
(a,a,a,a,a,b). A conservative man would protect 
himself against such a possibility. If you say 
that this possibility is inconceivable, then you 
really have more non -metric information than mere 
rank order. If you could define this extra know- 
ledge precisely, it would lead to another maximin 
sequence, one that might strike you as intuitively 
more reasonable . 

Here lies the heart of the situation. Quite 
commonly, when we say we only know rank order, we 
actually know more than this, but don't know how 
to express what else it is that we know. Typical- 
ly, our excess "knowledge" is to the effect that 
the scale is no worse than mildly curvilinear, 
that Nature behaves smoothly in some sense. This 
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a more vague and general conception than any 

of the highly specific cases considered in this 

piper. The maximin method needs extension to 

this general case, the problem being to specify 
the inequalities and corners in some reasonable 
way. The same problem, seen from a different 
standpoint, has been apperceived by Mosteller 

(195$). The problem is clear; the solution is not. 

The murkiness of the general "rank- order -plus- 
smo.thness" case should not obscure the fact that 

in a good many practical situations the maximin 
appro ch can straightforwardly be used to good 
effect Perhaps the leading candidate for a 
clear -c t case is the ordered metric scale for 
n =3. Ex -llent use can be made of the contrast 
(- 7,2,5) i the situation where X2 is known to 
lie between and X3 but nearer to X3 than to 

Xi. One inst- ce of the use of this contrast is 

already in the literature. (Sarnoffs1960). 
It is hoped that ther instances of practical ap- 
plication will malee their appearance in the near 
future. 
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